¬Divinycell HCP =

The high performance sandwich core

Divinycell HCP grade meets the demand for a high performance, low density buoyancy material with excellent characteristics. It is widely used in submarines, subsea buoyancy units, ROVs, diving bells and impact protection structures. As a result of its excellent hydraulic compressive properties and closed cell structure, it has very low buoyancy loss and water absorption under long-term loading conditions. HCP stands for Hydraulic Crush Point and is defined as the point of pressure in Bar, where the material when subjected to

an increasing pressure of 1-2 Bar/sec has lost 5% of its initial volume. The design of subsea buoyancy applications is complex and consideration has to be given to the required buoyancy loss and updrift requirements over the expected lifetime and service conditions, with respect to long and short term hydraulic compressive creep, water absorption and hydraulic fatigue. Please contact Diab Technical Services for design proposal.

Mechanical properties Divinycell® HCP

Property	Test Procedure	Unit		HCP 30	HCP50	HCP70	HCP90	HCP100
Density	ISO 845	kg/m³	Nominal	200	250	310	380	410
			Maximum	230	290	340	415	455
			Minimum	180	240	295	355	390
Hydraulic Crush Point	-	Bar	-	30-39	50-59	70-79	90-99	100-109
Community Other with 1	40TM B 4004		Nominal	5.4	7.2	8.1	10.2	11.6
Compressive Strength ¹	ASTM D 1621	MPa	Minimum	4.5	6.1	7.0	9.0	10.0
-	A OTAL D 4004	MD	Nominal	310	400	500	590	650
E-modulus (extensometer) ¹	ASTM D1621	MPa	Minimum	265	350	390	490	540
Tensile Strength ¹	A OTM D 4000	MD-	Nominal	7.1	9.2	11.0	12.6	13.5
rensile Strength	ASTM D 1623	MPa	Minimum	6.3	8.0	10.0	11.5	12.2
Ob Ot	ASTM C 273	MPa	Nominal	3.5	4.5	5.2	6.5	7.3
Shear Strength	ASTWC 273	IVIFA	Minimum	3.2	3.9	5.2 4.2	6.0	6.5
O. M. I. I.	ACTM C 070	MD-	Nominal	73	97	115	147	170
Shear Modulus	ASTM C 273	MPa	Minimum	65	81	90 12	126	146
Shear Strain	ASTM C 273	%	Nominal	45	45	35	35	35

All values measured at +23°C

1. Properties measured perpendicular to the plane

Nominal value is an average value of a mechanical property at a nominal density

Minimum value is a minimum guaranteed mechanical property a material has independently of density

Technical Data

Product Characteristics

- Excellent buoyancy performance
- · High impact resistance
- Low water absorption
- Good insulation properties
- Thermoformable
- Superior damage tolerance
- · Fast and easy to machine
- Good chemical resistance
- High temperature resistance

Type	Buoyancy ¹ (kg/m³)	Operational depth ² (m)	Crush depth (m)
HCP30	825	190	300
HCP50	775	300	500
HCP70	715	450	700
HCP90	645	550	900
HCP100	615	650	1000

- 1. Buoyancy above is calculated at surface level and with nominal density. Please contact Diab for detailed analyse before selecting material.
- Operational depth above is calculated with a max 5% buoyancy loss over 10 years operational time.
 Depth shown are for guidance only and can be optimized for individual conditions. Always contact Diab for advice before selecting material.
 Buoyancy calculated in sea water (density 1025 kg/m³).

Technical Characteristics Divinycell® HCP

Characteristics1	Unit	HCP30	HCP50	HCP70	HCP90	HCP100	Test method
Closed cells	%	>99	>99	>99	>99	>99	-
Thermal conductivity ²	W/(m-K)	0.049	0.051	0.057	0.058	0.060	EN 12667
Coeff, linear heat expansion	x10 ⁻⁶ /°C	37	37	37	37	37	ASTM D 696
Continous temp range	°C	-200 to +80	-				
Max process temp	°C	+90	+90	+90	+90	+90	-
Dissipation factor	-	0.0015	0.0020	0.0024	0.0030	0.0034	ASTM D 2520
Dielectric constant	-	1.25	1.32	1.39	1.47	1.53	ASTM D 2520

- 1. Typical values
- 2. Thermal conductivity at +10°C

Operating temperature is typically -200°C to +80°C. Normally Divinycell HCP can be processed up to +90°C without dimensional changes.

Maximum processing temperature is dependent on time, pressure and process conditions. Therefore, users are advised to contact Diab Technical Services to confirm that Divinycell HCP is compatible with their particular processing parameters.

Physical characteristics

Format		Unit	HCP30	HCP50	HCP70	HCP90	HCP100
Plain sheets	Length	mm	1730	1640	1410	1340	1310
	Width	mm	850	800	700	660	640
	Thickness	mm	62	54	31	27	23

Can be bonded to larger dimensions upon request.

Disclaimer:

This data sheet may be subject to revision and changes due to development and changes of the material. The data is derived from tests and experience. If not stated as minimum values, the data is average data and should be treated as such. Calculations should be verified by actual tests. The data is furnished without liability for the company and does not constitute a warranty or representation in respect of the material or its use. The company reserves the right to release new data sheets in replacement.

All content in this publication is protected by international copyright laws. Copyright © Diab February 2019

Issued: Feb 2019 Doc No: HCP Feb 2019 rev18 SI

Diab Group

Box 201 312 22 Laholm, Sweden Phone: +46 (0)430 163 00 E-mail: info@se.diabgroup.com

